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Overview of this talk 

•  The Atmosphere of Venus 

•  100 g Microprobes 

•  1-2 kg imaging probes 

•  Advantages of different Venus probe concepts. 
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Venus Atmosphere 

•  96% Carbon Dioxide 

•  Surface Temperature ~450 °C 

•  Surface pressure ~92 bar 

•  Clouds encircle the planet 
Cloud base at ~47 km altitude (100 °C, 

1.5 bar) 

Top of main clouds ~ 65 km (– 30 °C, 
0.1 bar) 

– Defined as optical depth = 1 in 
thermal IR 

– Haze layers up to >80 km altitude 
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Infrared transparency windows 

•  CO2 is greenhouse gas 
– Transparent in visible, opaque in most of infrared. 
– However, there are some gaps in the absorption spectrum 
– 1.01, 1.18, 1.7, 2.3 µm 

•  At these wavelengths, there is some thermal 
emission from deep atmosphere and from surface, 
which escapes to space. 

•  Main source of attenuation is scattering at cloud 
droplets 

– H2SO4 cloud droplets are highly reflective at <2.5 µm –  so 
there may be >50 scattering events for a photon leaving the 
surface. 

•  Suggestive of cumulus clouds, indicating moist 
convection 

•  LOTS OF SPATIAL VARIABILITY => WE WANT 
MULTIPLE VERTICAL PROFILES THROUGH 
CLOUDS 

Image: Galileo NIMS (NASA) 
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ESA VEP TRS 
(Venus Entry Probe Technology Reference Study) 

•  2 Orbiters (low circular orbiter, elliptical orbiter for data relay) 

•  1 balloon (55-60 km altitude, i.e. -10 to 20 °C, 0.5 – 1 bar)  

(left) Balloon as stowed in entry vehicle, and (right) layout of balloon gondola. 
From M van den Berg & P. Falkner, “Study overview of the Venus Entry 
Probe”, SCI-AP/2006/173/VEP/MvdB, 2006. Study by SSTL Ltd., UK. 
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Take advantage of winds to explore the planet! 
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•  Study funded by ESA, with Qinetiq as prime contractor, Oxford U as sub-contractor 

•  Microprobes – weighing 100 g each – are dropped from balloon. All 
communications are via balloon 

•  Assumed use of normal ‘mil-spec’ electronics 
– Termperature range –55°C to +125°C 

•  When microprobes reach surface, they are (1) very hot, and (2) very far from balloon 
(<300 km), due to wind shear. 

– According to Ralph Lorenz, 1998, probes < 350 g will never be able to reach surface while 
electronics <100 °C) 

•  Therefore, payload focuses on 20 – 60 km altitudes, i.e. cloud and sub-cloud layer. 

•  Payload mass budget of 10 g does not allow for sophisticated chemistry 
investigations. 

•  Therefore, payload is focussed on atmospheric dynamics & radiative balance. 
– Pressure, temperature, light flux (up & down, solar & thermal IR) 
Note that this reveals also cloud structure (from light flux measurements) 
Admittedly, simple contact gas sensors could also be included, eg SiC gas sensors 

Part 1: ESA VEP TRS - microprobes 
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ESA VEP TRS - microprobes 

Probe is 46 mm diameter x 110 mm long; Mass is 100 g.  
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100 g microprobes – flight profile 

Microprobes are tracked from balloon, to measure winds. 
•  Range of microprobes is obtained using a ‘ping’ system (accuracy: ±150 

m) 
•  Direction of arrival of radio signal is obtained using a phased antenna 

array aboard balloon. (DOA Accuracy: ±0.5 °) 
– Mass of this comms package on balloon, inc. antenna array: 1.5 kg. 
– Flight test of this comms/tracking system: Summer 2007 

•  Probes drop rapidly, in order to maximise vertical coverage. 
– Max drop speed is Mach 0.5 (u ~ 125 m/s). 
– 50 minutes later, when the probe reaches surface,  

§ it has decelerated to 10 m/s. 
§ It is up to 300 km from balloon (depending on wind profile) 

– Measurement rate is determined by required vertical resolution – once per 100m.  

•  Great advantage of 100 g microprobes: this allows a vast number of 
microprobes: e.g. 20 microprobes + comms package = 3.5 kg 
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Microprobe payload – 10 grams 

•  Payload has high TRL! 
– MEMS pressure sensors, thermocouples, Si photodiodes 
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Part 2: Imaging probes 
•  Why? 

– Images of the surface, at several wavelengths, would yield 
reflectivity at several wavelengths & hence mineralogical 
constraint.  
§ However, the downwelling light needs to be well-characterized, 
in order to get good reflectivity data. 

– Images of the surface useful for characterising 
morphology. 
§ However, the illumination is very diffuse 

– Added thermal mass is needed in order to reach surface, 
and to carry larger communications system 

– With added mass, we might as well carry a more 
sophisticated chemistry package, and a camera, as well as 
p, T, light flux sensors. 

Study funded by STFC (UK), study by Qinetiq, definition by Oxford Univ, 
Imperial Univ, UCL, Open Univ. in preparation for EVE proposal. 
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Venus radiative transfer 

Light from the surface of Venus is attenuated by: 
•  Gaseous absorption 

– CO2, H2SO4, H2O are all greenhouse gases, opaque in most of IR 

•  Rayleigh Scattering 
– There is so much CO2 that Rayleigh scattering is important for 

visble wavelengths. 

•  Scattering from cloud particles 
– Main cloud deck is at 48-65 km, with hazes up to 90 km 
– There may be some near-surface aerosols. Fog? Dust? ‘Silt?’  

•  So: in visible wavelengths, surface is only visible from <1km 
altitude (Moroz, PSS 2002) 

•  Surface is visible at 1.02 µm (IR window region) from sub-
cloud altitudes. 
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Imaging Probes: Science goal 

•  Obtain reflectivities at a few different 
wavelengths in 0.5 – 1.0 µm range to constrain 
surface composition 

– e.g. Pieters et al., Science, 1986 

•  Image, at high resolution, the surface 
morphology. 

– Lava channels / tectonic features 

– Beware that incoming light is diffuse, but some 
spatial contrast was possible on Huygens despite 
diffuse light. 

– Will not be clear whether observed contrast is due 
to composition or topography variation. 

Reflectance spectra of 
Venus candidate minerals, 
scaled to 0.56 µm. 
Pieters et al., Science, 1986 
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Imaging probes: camera payload 

•  Imaging = high data rate  - especially for a rapidly-dropping probe!  

•  We suggested using a camera based on the Venus Monitoring Camera (VMC) on 
Venus Express. 

– One CCD, 1000 x 1000 pixels 

– Four objective lenses cast an image of the same scene onto different quadrants of the CCD 

– Each lens has a different spectral bandpass filter (eg. 0.7, 0.8, 0.9, 1.02 µm). 

– 1 Mpixel x 12 bits/pixel x 0.5 Hz x 1/20 compression (lossy!) = 300 kbit/sec 

Images from VMC website at Max Planck Institute, Germany 
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Imaging probes: chemical payload 

•  Miniaturised Mass Spectrometer 
– Mass spectrometers < 100 g are possible 

– Low TRL if all infrastructure is included (pumps, etc) 

– Calibration difficult in rapidly changing thermal environment 

– Exciting, but not currently well defined for this mass range (<100 g) 

•  SiC gas sensors 
– Can operate at high temperatures >800 K 

– Sensitive to CO, SOx, H2O, and others TBD 

– Very light (<50 mg for array of sensors) 

•  For this study, we assumed an array of 16 SiC gas sensors 
(Mass of sensor arrays = 50 mg) 
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Imaging probe design 

Probe is 127 mm diameter x 305 mm long; Mass is 2 kg.  
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Imaging probes - flight profile 

•  Descent must be fast in order to minimise the temperature at 
the electronics (and CCD) when the probe reaches the surface. 

•  However, it is also vital to obtain good ambient pressure 
measurements during descent, for atmospheric profiles. 
Requires subsonic flow at pressure tappings. 

• Maximum speed reached: Mach 
0.5 (~125 m/s) Early in descent. 

• Descent speed at surface: 10 m/s 
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Imaging probes – thermal design 

•  Different insulation materials considered: 
– Rohacell (k ~0.0035 W m-1 K-1) and aerogel (k ~0.001 W m-1 K-1). 
– Final design uses 15 mm thickness of aerogel insulation 
– Final design uses <100 g of paraffin wax (phase change material @ 50°C) 

•  Thermal loads considered: 
– Power dissipation from DHU  ( ~1W) 
– Power dissipation from comms system (10W peak dissipation, <0.3 W ave) 
– Radiative heat leak through viewing window (<0.1 W, thanks to spectral bandpass filter) 
– Heating of exterior from environment; from radiative flux; from aerodynamic heating… 

•  Assume drop height of 60 km (Tinitial = - 10°C) 
•  When probe reaches surface, CCD is still at 51°C 

– Low temperature = low noise = good performance of CCD. 

•  This is a simple feasibility study: further optimisation is possible!!! 
•  1kg probe mass is possible, albeit with somewhat lower image resolution. 
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Conclusion: Microprobes, Miniprobes, or Probes? 

•  Microprobes (100 g) 
– Allow MANY ( >> 10 ) vertical profiles 
– Good for dynamics; radiative balance; cloud structure 
– Not great for chemistry 
– Do not reach surface (while still communicating). 

•  Miniprobes (~1-2 kg) 
– 1-6 probes may be deployed from balloon. 
– Surface imaging possible. 
– Could carry a complex miniaturised chemistry package. 

•  Direct-entry large probe (>20 kg). 
– Allows wider distribution of probes around the planet 
– Comms direct to orbiter, or direct-to-Earth 
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